AskDefine | Define guanine

Dictionary Definition

guanine n : a purine base found in DNA and RNA; pairs with cytosine [syn: G]

User Contributed Dictionary



From guano + -ine.




  1. A substance obtained from guano, found in the liver and other tissues of animals; as a base it pairs with cytosine in DNA and RNA.


substance obtained from guano
  • Spanish: guanina

Extensive Definition

Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, thymine, and uracil. With the formula C5H5N5O, guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine.

Basic principles

Guanine, along with adenine and cytosine, is present in both DNA and RNA, whereas thymine is usually seen only in DNA, and uracil only in RNA. Guanine has two tautomeric forms, the keto form and enol form. It binds to cytosine through three hydrogen bonds. In cytosine, the amino group acts as the hydrogen donor and the C-2 carbonyl and the N-3 amine as the hydrogen-bond acceptors. Guanine has a group at C-6 that acts as the hydrogen acceptor, while the group at N-1 and the amino group at C-2 acts as the hydrogen donors. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. About fifty years later, Fischer determined the structure and also showed that uric acid can be converted to guanine. Guanine can be hydrolyzed with strong acid to glycine, ammonia, carbon dioxide, and carbon monoxide. Guanine is first deaminated to XanthineGuanine oxidizes more readily than adenine, the other purine-derivative base in DNA. Its high melting point of 350°C reflects the intermolecular hydrogen bonding between the oxo and amino groups in the molecules in the crystal. Because of this intermolecular bonding, guanine is relatively insoluble in water, but it is soluble in dilute acids and bases.


Trace amounts of guanine form by the polymerization of ammonium cyanide (NH4CN). Two experiments conducted by Levy et al. showed that heating 10 mol·L−1 NH4CN at 80 °C for 24 hours gave a yield of 0.0007%, while using 0.1 mol·L−1 NH4CN frozen at -20 °C for 25 years gave a 0.0035% yield. These results indicate guanine could arise in frozen regions of the primitive earth. In 1984, Yuasa reported a 0.00017% yield of guanine after the electrical discharge of NH3, CH4, C2H6, and 50 mL of water, followed by a subsequent acid hydrolysis. However, it is unknown whether the presence of guanine was not simply a resultant contaminant of the reaction.
5NH3 + CH4 + 2C2H6 + H2O → C5H8N5O (guanine) + (25/2)H2
A Fischer-Tropsch synthesis can also be used to form guanine, along with adenine, uracil, and thymine. Heating an equimolar gas mixture of CO, H2, and NH3 to 700 °C for 15 to 24 minutes, followed by quick cooling and then sustainted reheating to 100 to 200 °C for 16 to 44 hours with an alumina catalyst, yielded guanine and uracil:
5CO + (1/2)H2 + 5NH3 → C5H8N5O (guanine) + 4H2O
Traube's synthesis involves heating 2,4,5-triamino-1,6-dihydro-6-oxypyrimidine (as the sulfate) with formic acid for several hours.

Other uses

In 1656 in Paris, François Jaquin (a rosary maker) extracted from scales of some fishes the so-called pearl essence, crystalline guanine forming G-quadruplexes: In cosmetic industry, crystalline guanine is used as an additive to various products (e.g., shampoos), where it provides the pearly iridescent effect. It is also used in metallic paints and simulated pearls and plastics. It provides shimmering luster to eye shadow and nail polish. Guanine crystals are rhombic platelets composed of multiple, transparent layers, but they have a high index of refraction that partially reflects and transmits light from layer to layer, thus producing a pearly luster. It can be applied by spray, painting, or dipping. It may irritate eyes. Its alternatives are mica, synthetic pearl, and aluminium and bronze particles.


  • Miyakawa, S., Murasawa, K., Kobayashi, K., Sawaoka, AB. "Abiotic synthesis of guanine with high-temperature plasma." Orig Life Evol Biosph. 30(6): 557-66, Dec. 2000.
  • Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, J.D., Scrimgeour, K.G. "Principles of Biochemistry." Prentice Hall (New Jersey). 3rd Edition, 2002.
  • Lister, J.H. "Part II Purines." The Chemistry of Heterocyclic Compounds. Wiley-Interscience (New York). 1971.

External links

guanine in Arabic: جوانين
guanine in Catalan: Guanina
guanine in Czech: Guanin
guanine in Danish: Guanin
guanine in German: Guanin
guanine in Modern Greek (1453-): Γουανίνη
guanine in Spanish: Guanina
guanine in Esperanto: Guanino
guanine in French: Guanine
guanine in Galician: Guanina
guanine in Indonesian: Guanin
guanine in Interlingua (International Auxiliary Language Association): Guanina
guanine in Italian: Guanina
guanine in Hebrew: גואנין
guanine in Lithuanian: Guaninas
guanine in Hungarian: Guanin
guanine in Dutch: Guanine
guanine in Japanese: グアニン
guanine in Norwegian: Guanin
guanine in Occitan (post 1500): Guanina
guanine in Polish: Guanina
guanine in Portuguese: Guanina
guanine in Russian: Гуанин
guanine in Simple English: Guanine
guanine in Slovak: Guanín
guanine in Slovenian: Gvanin
guanine in Serbian: Гуанин
guanine in Serbo-Croatian: Guanin
guanine in Finnish: Guaniini
guanine in Swedish: Guanin
guanine in Vietnamese: Guanine
guanine in Turkish: Guanin
guanine in Ukrainian: Гуанін
guanine in Chinese: 鳥嘌呤
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1